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Abstract

This paper presents a notation system to facilitate to solution of differential equations via Taylor
series expansions and applies it to solve the circular restricted three body problem. Unlike previous
Taylor series methods in the astrodynamics literature, computer algebra solvers are not used. Instead
the notation system allows one to solve a system of differential equations analytically “by hand” without
resorting to computer algebra software. This method produces recurrence relations explicitly in terms of
a sequence of derivatives of the state with respect to time for the coefficients of Taylor Series solutions
that can be evaluated numerically or manipulated further to investigate properties of the solution. For
example, additional derivatives with respect to other parameters may also be found, including those that
describe the dependence of the solution on initial conditions.

1 Introduction

In 1885, Acta Mathematica announced a prize in honor of King Oscar II of Sweden and Norway to anyone
who could solve the n-body problem [1]. Poincaré won the prize, but not by solving the n-body problem.
Instead Poincaré proved that the n-body problem could not be solved by reducing the dimension of the
problem with integrals of the motion (as was done in the solution of the two-body problem). Over time,
Poincaré’s solution has led to what Florian Diacu [2] calls “folk mathematics”, i.e the folk tale told by
mathematicians, physicists, and astrodynamics that there is no solution to the 3-body or n-body problems.
However, Poincaré only showed that one method couldn’t be used to solve the 3-body or n-body problems.
In fact, in 1912, Karl Sundman [3] found a solution to the three-body problem using power series that
converged for all cases except those with collisions or zero initial angular momentum. The n-body problem
took until 1991 until a similar solution was found by Quidong Wang [4]. However, although both Sundman’s
and Wang’s solutions converge for most initial conditions, they converge very slowly and round off errors
make them unusable in numerical work [2]. This has resulted in the larger astrodynamics community being
mostly unaware of this method for solving the 3-body and n-body problem.

In this paper, I develop a general approach to solving ordinary differential equations like the 3-body
problem and arrive at a result equivalent to Sundman’s. However, this approach is much more easily
generalized to solving other systems of differential equations via Taylor Series substitution. To do this, I
focus on reducing the tedium of performing algebraic manipulations of power series when substituting them
into a differential equation. I accomplish this with a new notation system that simplifies the manipulation
of series expansions with nested summations, recursively-dependent coefficients, and other complexities.
I then use this system to develop relations that facilitate addition, subtraction, multiplication, division,
exponentiation, differentiation, and integration of power series. This then allows me to directly manipulate
the series without resorting to either a computer algebra system or pages upon pages of nested sums and
new variables for intermediate series expansions.

I then apply this method to solve the circular restricted three body problem with a recurrence relation
for the coefficients of Taylor Series expansions of the state. Because I arrive at these expansions analytically,
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it is then possible to take derivatives of them with respect to the initial conditions or other parameters.
Furthermore, this method can be applied to solve other challenging systems of differential equations.

2 Notation System

The notation system presented in this section is intended to facilitate working with complex summations
over multiple indices. This will be used in the next section to develop methods for algebraic manipulation
of power series.

2.1 Summation Indices

As in tensor algebra, indices will be both subscripted and superscripted. I.e., the expression: xi, i shall
denote an index rather than a power, i.e. the ith element of x as opposed to x to the ith power. A power of
x will be denoted by parentheses, e.g. (x)i. This allows the use of the Einstein summation convention where
indices repeated both as subscripts and superscripts imply summation over that index:

an(x)n =

∞∑

n=0

an(x)n = a0 + a1x+ a2(x)2 + . . . (2.1)

This summation convention allows complicated sums to be written much more compactly:

ainbic
jdj(x)n =

∞∑

n=0

( ∞∑

i=0

ainbi

)

∞∑

j=0

cjdj


 (x)n

=

∞∑

n=0

∞∑

i=0

∞∑

j=0

ainbic
jdj(x)n (2.2)

A repeated index is a placeholder for a sum (i.e. a “dummy index”) and can be replaced without changing
the meaning of a relation:

ainbic
jdj(x)n = aqpbqc

rdr(x)p (2.3)

A convenient convention is to think of upstairs indices as rows of a matrix and downstairs as columns. This
then allows easy transcription between this notation system and matrix notation, for example:

AB = aijb
j
k (2.4)

~xTA ~x = xia
i
jx
j (2.5)

The Kronecker delta provides the Identity transformation, and is defined as:

δν1ν2...νnρ1ρ2...ρm ≡
{

1 if all νn and ρm equal
0 otherwise

(2.6)

Where there are n upstairs indices and m downstairs indices.
We will also use the Levi-Civita symbol, which for n indices is defined as:

ερ1...ρn ≡





1 if indices are an even permutation
−1 if indices are an odd permutation
0 if any index is repeated

(2.7)

For three indices the even permutations are: (1,2,3), (2,3,1), (3,1,2), and the odd permutations are: (1,3,2),
(2,1,3), (3,2,1). The Levi-Civita symbol then allows us to write the vector cross product for arbitrary-
dimension vectors:

~c = ~a×~b = ci = εijkajbk (2.8)
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2.1.1 Sigma

The Σ symbol, defined as:
Σρ1ρ2...ρmµ1µ2...µn

≡ 1 (2.9)

can be used indicate sums when indices are not repeated as subscripts and superscripts. For example, the
geometric series may be described as:

Σn(−x)n = 1− x+ (x)2 − (x)3 + . . . (2.10)

Since Σ is always equal to one, multiplying or dividing Σ with itself yields the following identities:

ΣnΣn = Σn (2.11)

Σn

Σn
= Σn =

1

Σn
(2.12)

When multiplying or dividing Σ coefficients with different indices, the indices may be combined:

ΣmΣnΣp = Σmnp (2.13)

Σm
Σn

= Σnm =
1

Σnm
(2.14)

2.1.2 Range of Indices

When not specified, it will be assumed that indices can have any non-negative integer value and that sums
run from zero to infinity. When other ranges are needed, we will say indices take on values from the set
I (i.e. i, j, k, etc. ∈ I ) and define the set I used in a given case. To denote that indices could only have
non-negative integer values, we may use: I ⊆ N0. When needed, In can be used to denote values allowed
by lowercase Latin indices, IN for uppercase Latin indices, and Iα for Greek indices. This allows us to
specify limited ranges for special indices when we want to use some indices for infinite sums and others for
finite ranges, for example: In = N0,Iα = {0, 1, . . . , 6}.

Sometimes it will be necessary to have some sums in an expression that start at different initial indices.
For entities that have only one superscript or subscript, we maydenote a special starting index with a
prepended superscript notation:

jan =⇒ n ≥ j (2.15)

That is, in (2.15), n can take on values from I such that n ≥ j. This restriction will affect anything summed
with jan, but not other terms. For example, consider the following (with I = N0):

cn = bnan + bn
3an (2.16)

In (2.16), the first term is summed from 0 to ∞ and the second is summed from 3 to ∞. To denote a lower
and an upper bound on an index, we may use two semicolon-separated prepended superscripts, like this:

j;kan =⇒ j ≤ n ≤ k (2.17)

And to put limits on a particular index when an entity has multiple indices, we may use a Σ symbol. For
example, the following:

cn =3;6 Σmamn (2.18)

would sum amn over the first index from 3 to 6.
A principal utility of this notation is that it allows us to partition infinite sums when using the summation

convention:

an(x)n = a0 +1an(x)n

= a0 + a1(x) +2an(x)n

= a0 + a1(x) + a2(x)2 +3an(x)n

= a0 + a1(x) +2;99an(x)n +100an(x)n (2.19)

This notation is also useful as a shorthand to specify a values for range of coefficients when defining a
series. For example, the coefficients of an infinite series could be specified by the following:

a0 = 2 a1 = 0 2an = 1/n (2.20)
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2.1.3 Compound-Index Notation and Implied Multiplication

In the definitions for the Kronecker delta and the Levi-Civita symbol in (2.6) and (2.7), I used a subscripted
indices with ellipses such as “ρ1 . . . ρn” to indicate an arbitrary number of indices. This case happens often
enough that a more convenient shorthand is needed. Compound indices inside of angle brackets will allow
us to indicate a set of indices:

A〈ρi〉 = Aρ0ρ1...ρn (2.21)

In the above case, the subscript of the compound index is not assumed to be a member of the set I (i.e. a
compound index’s subscript does not have the same range as that index or other indices in an expression).
Rather, the compound subscript is used to denote an arbitrary number of indices. If the compound subscript
appears elsewhere in an expression, it will be assumed to run from 0 to the one less than the value of that
index in other subscripts. E.g.: aib

<ρi> = aib
ρ1...ρ(i−1) .

Although having 〈ρi〉 run from ρ0 to ρ(i−1) instead of ρi is counter-intuitive, this convention pays off in
simplifying complex relations that arise in later sections. This is primarily because we will want expressions
like 〈aρi〉 to denote that a has i indices, but we will also want to use the i index elsewhere in an expression
where indices start at 0. The only way to be consistent with both desires is to run i in 〈aρi〉 from 0 to i− 1.

This compound-index notation also allows us to denote repeated multiplications when angle brackets are
used on factors instead of indices. For example:

A〈ρi〉〈bρi〉 = Aρ0ρ1...ρ(i−1)bρ0bρ1 . . . bρ(i−1)
(2.22)

or:
A〈ρi〉〈(bρi)i〉 = Aρ0ρ1...ρ(i−1)(bρ0)0(bρ1)1 . . . (bρ(i−1)

)(i−1) (2.23)

This angle bracket shorthand allows definition of operations and symbols for arbitrary dimension. For
example, the matrix determinant may be written for an n× n square matrix as:

det
∣∣aij
∣∣ = ε〈ρi〉〈aiρi〉 = ερ0ρ1...ρ(n−1)a0ρ0a

1
ρ1 . . . a

(n−1)
ρ(n−1)

(2.24)

where the range for each of the ρi indices goes from 0 to n − 1. Notice that the i superscript of aiρi does
not imply a summation with the i subscripts in the ρi indices. Instead, the index matching inside of angle
brackets is used to describe the pattern in the implied multiplication.

We may also use a superscript outside of the angle brackets, analogous to a power, to denote when the
same index is specific number of times:

A〈ρ〉
s

= Aρρ...ρ where there are s of the ρ superscripts (2.25)

This outside superscript matches with the same index inside of the angle brackets. This allows for more
complex indexing when needed, e.g.:

A〈ρs〉
s

= A〈ρ0〉
0〈ρ1〉1〈ρ2〉2... = Aρ1ρ2ρ2ρ3ρ3ρ3... (2.26)

In the case of nested angle brackets, the inner angle brackets are evaluated first:

〈Aνj〈ρs〉〉 = 〈Aνjρ0...ρ(s−1)
〉 = Aν0ρ0...ρ(s−1)

Aνiρ0...ρ(s−1)
. . . A

ν(j−1)
ρ0...ρ(s−1)

(2.27)

2.2 The Power Bracket Function & The Series Derivative

This section will introduce a modified power function, the power bracket, defined below, instead of the
standard power function, (x)n. This notation allows us to work more directly with the derivatives in Taylor
series expansions and helps to reduce visual noise in complicated sums.

Definition 2.1. Let x, x̃ ∈ C and n ∈ I ⊆ N0, then the power bracket function is defined as:

[x]n ≡ [x]n ≡ 1

n!
(x− x̃)n (2.28)

Where x̃ is the bracket power’s center point. Alternatively, the center point can be explicitly specified as a
second argument to the power bracket:

[x, x̃i]n ≡ [x, x̃i]
n ≡ 1

n!
(x− x̃i)n (2.29)
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When x̃ is not specified it is assumed to be the same for all power brackets and other entities using the
center point in a given expression.

fn(x̃)[x]n = fn(x̃)[x, x̃]n = Σnf
n(x̃)

1

n!
(x− x̃)n (2.30)

Usually there is no need to explicitly specify x̃, even when it is an argument to functions other than the
bracket power.

fn[x]n + gm[x]m = fn(x̃)[x, x̃]n + gm(x̃)[x, x̃]m (2.31)

Relations derived with [x]n or [x]n will hold for any allowable value of x̃. The goal in treating the center
point as arbitrary is to allow series manipulations and the solution of a differential equation without choosing
any particular point about which to expand the series until after the desired form of a series is found. I will
formally justify this hidden variable approach in the next section.

The definition of the power bracket in (2.28) was chosen because it provides the following property when
differentiated:

d

dx
[x]n =

n

n!
(x− x̃)n−1

=
1

(n− 1)!
(x− x̃)n−1

= [x](n−1) (2.32)

From (2.32), we see that the s-th order derivative of the power bracket is given by simply:

ds

dxs
[x]n = [x](n−s) (2.33)

However, the price for this simple differentiation rule is that the multiplication of bracket powers of x is less
straightforward than just adding exponents with the regular power function because of the 1/n! terms:

[x]m[x]n =
1

m!n!
(x− x̃)(m+n) =

(m+ n)!

m!n!
[x](m+n) =

(
m+ n

n

)
[x](m+n) (2.34)

Similarly, the division of two power brackets of x is given by:

[x]n
[x]m

=
m!

n!

(x− x̃)n

(x− x̃)m
=
m!(n−m)!

n!
[x](n−m) =

1(
n
m

) [x](n−m) (2.35)

The factorial terms must also be dealt with when raising to a power:

([x]m)
n

=

(
1

m!
(x− x̃)m

)n
=

(mn)!

(m!)n
1

(mn)!
(x− x̃)(mn) =

(mn)!

(m!)n
[x](mn) (2.36)

2.2.1 Differentiation and Integration of Series Using Bracket Powers

In the following sections I will derive relations for the manipulation of infinite series of bracket powers without
regard for convergence. That is, I will treat them as formal power series.

Proposition 2.2. Consider the infinite series an[x]n with index n ∈ I ⊆ N0 and each an, x ∈ C. If the an

are not functions of x, then the sth-derivative of the series with respect to x is given by:

ds

dxs
an[x]n = a(n+s)[x]n (2.37)

Proof. ds

dxs an[x]n = ds

dxs

(
0;kan[x]n +k+1an[x]n

)
= ds

dxs

0;k
an[x]n+ ds

dxs

k+1
an[x]n. The sth-derivative of the finite

sum: 0;kan[x]n may be taken term by term and then summed. Since the an are not functions of x, by (2.32),
the derivative of each term is 0;kan[x]n−s (here there is no summation and n ≥ s). This may then be summed
over n to give the sth-derivative of the sum, 0;kan[x]n, as the sum, s;kan[x]n−s. We may then make the index
substitution m = n− s and write s;kan[x]n−s =s;k a(m+s)[x]m. Since (m+ s) ≥ s for all non-negative m, and

since m is a dummy index and we are free to change its symbol, so: s;ka(m+s)[x]m =0;kΣna(n+s)[x]n. Finally,

since ds

dxs an[x]n =0;kΣna(n+s)[x]n + ds

dxs

k+1
an[x]n for all k, by induction then: ds

dxs an[x]n = an+s[x]n.
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Proposition 2.3. Consider the infinite series an[x]n with index n ∈ I ⊆ N0 and each an, x ∈ C. If the an

are not functions of x, then the sth indefinite integral over x of the series is given by:
∫
. . .

∫
an[x]n(dx)s = 0,s−1An[x]n + an[x](n+s) (2.38)

where the 0,s−1An are constants of integration.

Proof. By Proposition 2.2: ds

dxs an−s[x]n = an[x]n. Therefore, by the Fundamental Theorem of Calculus,∫
. . .
∫
an[x]n(dx)s = an−s[x]n.

In Proposition 2.3 we run into a subtle consequence of the allowed index ranges. In (2.38) the index n is
restricted to I ⊆ N0. If we subtracted s from the subscript for the integral, e.g. a(n−s), then we imply that
the index could take on negative values outside of I . To avoid this, Proposition 2.3 puts the n + s on the
bracket power and partitions the sum with the 0,s−1An coefficients for the constants of the integration.

2.2.2 Series Derivative

If we construct a Taylor series such that the point about which the series is expanded is a free parameter,
then we can make a univariate function from C∞ into a bivariate function that describes all possible Taylor
series expansions of that function. We can also use bracket powers to simply the Taylor series expansion
so that the fn coefficients are explicitly the nth-derivatives of f(x) evaluated at x̃. I will call this Taylor
series with the more explicit use of derivatives as series coefficients and the hidden center point, the series
derivative:

Definition 2.4. Let I ⊆ N0, x, x̃ ∈ X ⊆ C, and f(x) ∈ C∞(X) (i.e., f(x) is infinitely differentiable
throughout X), then the series derivative of f(x) is:

fn(x̃)[x]n = fn[x]n (2.39)

where:

fn(x̃) = fn =
dn

dxn
f(x)

∣∣∣∣
x=x̃

(2.40)

We may choose to explicitly show x̃ in a series derivative as fn(x̃)[x]n. Or we may omit it and use
fn[x]n with the convention that all center points in a given expression are consistent. We can keep x̃ hidden
away until we need it. The x̃ doesn’t affect the derivatives or algebraic operations we perform on a series
derivative.

Proposition 2.5. Consider the series derivative fn(x̃)[x]n with index n ∈ I ⊆ N0. Then the sth-derivative
of the series respect to x̃ is:

ds

dx̃s
fn(x̃)[x]n = 0 (2.41)

Proof. Since fn(x̃) = dn

dxn f(x)
∣∣
x=x̃

then d
dx̃f

n(x̃) = f (n+1). But d
dx̃ [x]n = −[x]n−1 and d

dx̃f
n(x̃)[x]n =

f (n+1)(x̃)[x]n − 1fn(x̃)[x]n−1 = f (n+1)(x̃)[x]n − f (n+1)(x̃)[x]n = 0. Since d
dx̃f

n(x̃)[x]n = 0, all higher
derivatives are also zero.

If the starting function is analytic everywhere with a radius of convergence large enough to cover the
whole domain of the starting function, then the bivariate function from the Taylor series is always equivalent
to the univariate function for any expansion center point, x̃. But what if the radius of convergence is smaller?
What if the function is somewhere non-analytic and the radius of convergence is zero? Well, even then there
is an x̃ for any x that lets us get f(x) from the series derivative:

Theorem 2.6. ∃(x̃, x) ∈ X : ds

dxs f
n(x̃)[x]n = ds

dxs f(x),∀s ∈ N0

Proof. If x̃ = x, then by Prop. 2.2, ds

dxs f
n(x̃)[x]n

∣∣
x=x̃

= fs = ds

dxs f(x)

For any x there is at least one x̃ that returns values for f(x) and all of its derivatives from fn(x̃)[x]n.
This means we can manipulate a functions series derivative like a formal power series, without regard to
convergence, and at the very least, we will have relations valid for the function’s derivatives at x̃ = x for any
x in the function’s domain.
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2.3 Superscripts vs. Subscripts

In the following section most results will hold for either subscripted indices or superscripted indices. How-
ever, in a given expression it is important to maintain the location of an index when performing algebraic
manipulations. This is both to preserve any implied summations but also because, as in tensor notation,
there will be an implied connection between the index location and the type of differentiation performed. We
can view a sum over superscripted indices as a series derivative with total derivatives and subscripted indices
suggest a connection to a partial derivative. I.e., an[t]n suggests that each an is the n-th total derivative of
a(t) with respect to t and an[x]n suggests each an is ∂n

∂xn a(x).

3 Algebraic Manipulation of Series Derivatives

This section builds a unified framework that will facilitate the algebraic manipulation of series derivatives
and to make it more convenient than previous approaches to the algebraic manipulation of Taylor series
expansions. Although the application here is with series derivatives and bracket powers, all of these methods
could be re-written for the manipulation of generic power series. In the following, relations for algebraic
manipulation of entities with upstairs indices also hold for downstairs indices and vice versa. However, this
isn’t always explicitly shown to avoid unnecessary tedium. (I.e., I have tried to limit myself to just necessary
tedium.)

3.1 Addition and Subtraction

Due to the distributive law of elementary algebra, series derivatives may be added and subtracted term by
term by combining the coefficients of like terms:

f(x) + g(x) = fm[x]m + gn[x]n = (fm + gm)[x]m (3.1)

f(x)− g(x) = fm[x]m − gn[x]n = (fm − gm)[x]m (3.2)

3.2 Multiplication

Proposition 3.1. Let I ⊆ N0, then two differential series may be multiplied using the binomial coefficient,(
p
m

)
= p!/(n!(n−m)!), with this relation:

(fm[x]m)(gn[x]n) = Σm

(
p

m

)
fmg(p−m)[x]p (3.3)

Proof. When we multiply (fm[x]m)(gn[x]n), [x]m[x]n =
(
m+n
m

)
[x]m+n in each term of the sum. Therefore:

(fm[x]m)(gn[x]n) =
(
m+n
m

)
fmgn[x]m+n. We may then make the change of indices p = m + n to arrive at

(3.3).

The above is merely a restatement of the Cauchy product for power series in terms of bracket powers.
But in this form, it also reminds us of the general Leibniz Rule for the pth order derivative of the product
of f(x) and g(x). It is also evocative of the binomial theorem.

Let’s explore this connection with the binomial series further. We start by introducing the β-coefficient
as:

βnpq =

{ (
n
p

)
if p+ q = n

0 if p+ q 6= n
(3.4)

Then:

βnpqf
pgq =

∞∑

p=0

∞∑

q=0

{ (
n
p

)
fpgq if p+ q = n

0 if p+ q 6= n
(3.5)

and since p+ q = n for nonzero terms, we may substitute q = n− p:

βnpqf
pgq =

∞∑

p=0

(
n

p

)
fpg(n−p) = Σp

(
n

p

)
fpg(n−p) (3.6)
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This then enables an alternate form of (3.3):

(fp[x]p)(g
q[x]q) = βnpqf

pgq[x]n (3.7)

If we instead define this β-coefficient for an arbitrary number of indices using the multinomial coefficient

(
(ρ0+ρ1+...+ρ(i−1))!

ρ0!ρ1!...ρ(i−1)!
), we can then use it to multiply an arbitrary number of differential series together.

Definition 3.2. Let I ⊆ N0, then the β-coefficient is defined as:

β〈ρi〉n ≡ βn〈ρi〉 ≡
{

n!
ρ0!ρ1!...ρ(i−1)!

if Σiρi = n

0 if Σiρi 6= n
(3.8)

Theorem 3.3. For I ⊆ N0, the product of an arbitrary number of bracket series is given by:

(f0ρ0 [x]ρ0)(f1ρ1 [x]ρ1) . . . (f (i−1)ρ(i−1)
[x]ρ(i−1)) = β〈ρi〉n 〈f iρi〉[x]n (3.9)

or:
(fρ00 [x]ρ0)(fρ11 [x]ρ1) . . . (f

ρ(i−1)

(i−1) [x]ρ(i−1)
) = βn〈ρi〉〈f

ρi
i 〉[x]n (3.10)

Proof. First we prove (3.9). From the definition of the bracket power in (2.28), the product of i bracket
powers is:

[x]ρ0 [x]ρ1 . . . [x]ρ(i−1) =
1

ρ0!ρ1! . . . ρ(i−1)!
(x− x̃)ρ0+ρ1+...+ρ(i−1)

=
(ρ0 + ρ1 + . . .+ ρ(i−1))!

ρ0!ρ1! . . . ρ(i−1)!
[x]ρ0+ρ1+...+ρ(i−1) (3.11)

where
(ρ0+ρ1!+...+ρ(i−1))!

ρ0!ρ1!...ρ(i−1)!
is the multinomial coefficient for the ρi. If we wish to replace the [x]ρ0+ρ1+...+ρ(i−1)

with [x]n, we could do that unless we were also summing over the ρi. But this is exactly what we are doing

with the f iρi when we multiply (f0ρ0 [x]ρ0)(f1ρ1 [x]ρ1) . . . (f
(i−1)
ρ(i−1)

[x]ρ(i−1)). Because of this, when we write each

[x]n term we must ensure that it is multiplied by all combinations of the f iρi such that the ρi sum to n and

that each product of the f iρi have the proper multinomial coefficient. Summing with β
〈ρi〉
n as it is defined in

Definition 3.2 achieves this:

f0ρ0 [x]ρ0 . . . f (i−1)ρ(i−1)
[x]ρ(i−1) = f0ρ0 . . . f

(i−1)
ρ(i−1)

(ρ0 + . . .+ ρ(i−1))!

ρ0! . . . ρ(i−1)!
[x]ρ0+...+ρ(i−1)

=

{
f0ρ0 . . . f

(i−1)
ρ(i−1)

n!
ρ0!...ρ(i−1)!

[x]n if Σiρi = n

0 if Σiρi 6= n

= β〈ρi〉n 〈f iρi〉[x]n (3.12)

The above proof also holds for (3.10) when repeated with superscripted and subscripted indices swapped.

3.2.1 Properties of the β-coefficients

These β-coefficients have many interesting properties that will be useful will when deriving relations in the
following sections.

First, the β-coefficient with two indices, βnm, reduces to the Kronecker delta.

Identity 3.4. If I ⊆ N0, then:
βnm = δnm (3.13)

Proof. Per Definition 3.2, if βnm is interpreted as βn〈ρm〉:

βnm =

{
n!
m! if m = n
0 if m 6= n

(3.14)

Since n!
m! = 1 when n = m, this is equivalent to the Kronecker Delta, δnm. The same also holds if the if βnm

is interpreted as β
〈ρn〉
n .
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The β-coefficient multiplication identities below for the βn〈ρm〉 form also hold for the β
〈ρm〉
n form.

Identity 3.5. Provided I ⊆ N0, then:

βnjq β〈ρm〉n β
〈νi〉
j = β〈ρm〉〈νi〉q (3.15)

Proof. The left side is only nonzero when all of the β-coefficients in the product are nonzero. This happens
when Σmρm = n, Σiνi = j, and n + j = q. I.e., when Σmρm + Σiνi = q. In those cases the product of

βnjq β
〈ρm〉
n β

〈ρm〉
n β

〈νi〉
j is q!

n!j!
n!

ρ0!ρ1!...ρ(m−1)!
j!

ν10!ν1!...ν(i−1)!
, which, per Definition 3.2, is equivalent to β

〈ρm〉〈νi〉
q .

Identity 3.6. Provided I ⊆ N0, then:

βj〈ρm〉n β
〈νi〉
j = β〈ρm〉〈νi〉n (3.16)

Proof. By Definition 3.2, n = j + Σmρm = Σiνi + Σmρm for the β-coefficients to be non-zero, and
n!

j!ρ0!ρ1!...ρ(m−1)!
j!

ν0!ν1!...ν(i−1)!
= n!

ρ0!ρ1!...ρ(m−1)!ν0!ν1!...ν(i−1)!

Identity 3.7. Provided I ⊆ N0, then:
β〈ρm〉n 〈β〈νi〉ρm 〉 = β〈νi〉

m

n (3.17)

Proof. Recall that β
〈ρm〉
n 〈β〈νi〉ρm 〉 denotes β

ρ1...ρ(m−1)
n (β

〈νi〉
ρ0 β

〈νi〉
ρ1 . . . β

〈νi〉
ρ(m−1)

). So Σmρm = n for β
〈ρm〉
n 6= 0, and

for each β
〈νi〉
ρm 6= 0 the Σiνi = ρm. This means (Σiνi)

m = n is required for the expression in (3.17) to be

nonzero. In that case it is equal to n!
ρ0!...ρ(m−1)!

ρ0!
ν0!...ν(i−1)!

. . .
ρ(m−1)!

ν1!...ν(i−1)!
= n!

(ν1!)m...(ν(i−1)!)m
= β

〈νi〉m
n

3.3 Raising to a Positive Integer Power

We can use Theorem 3.3 to develop relations for raising a differential series to a power. Let’s start with a
definition:

Definition 3.8. Provided I ⊆ N0 and x, z ∈ C, then:

(fn[x]n)z = fn•(z)[x]n (3.18)

or
(fn[x]n)z = f•(z)n [x]n (3.19)

where fn•(z) and f
•(z)
n are the dot powers of fn and fn respectively.

For dot powers with exponents in N0, we can use β-coefficients with implied multiplication to write an
expression for these dot power coefficients:

Proposition 3.9. Provided I ⊆ N0 and m ∈ N0, then:

fn•(m) = βn〈ρm〉〈f
ρm〉 (3.20)

and
f•(m)
n = β〈ρm〉n 〈fρm〉 (3.21)

Proof. We may raise a series to a positive integer power by performing successive multiplications on the
series using Theorem 3.3:

(fn[x]n)m = βn〈ρm〉〈f
ρm〉[x]n = fn•(m) = fn•(m) (3.22)

and
(fn[x]n)m = β〈ρm〉n 〈fρm〉[x]n = f•(m)

n = fn•(m) (3.23)

In the following sections, for brevity, I will present relations for dot powers using only the f
•(m)
n form,

but these also hold for other forms.
Now let’s derive a few useful identities. As with scalar powers, we can add positive integer dot powers

when multiplying:
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Identity 3.10. Provided I ⊆ N0 and s, t ∈ N0, then:

βmnq a•(s)m a•(t)n = a•(s+t)q (3.24)

Proof. Employing Proposition 3.9 with Identity 3.5:

βmnq a•(s)m a•(t)n [x]q = βmnq β〈ρs〉m 〈aρs〉β〈νt〉n 〈aνt〉[x]q

= β〈ρs〉〈νt〉q 〈aρs〉〈aνt〉[x]q

= β〈γs+t〉
q 〈aγs+t

〉[x]q

= a•(s+t)q [x]q (3.25)

By comparing like terms in βmnq a
•(s)
m a

•(t)
n [x]q = a

•(s+t)
q [x]q, we arrive at (3.24).

The dot powers of zero and one behave as expected:

Identity 3.11. Provided I ⊆ N0, then:
a•(1)m = am (3.26)

Proof. By Proposition 3.9: a
•(1)
m = βmn an. By Identity 3.4: βmn an = δmn an = am.

Identity 3.12.

a
•(0)
0 = 1 and 1a•(0)n = 0 (3.27)

Proof. By Identities 3.10 and 3.11: βmnq a
•(0)
m a

•(1)
n = a

•(0+1)
q = aq. But by Identity 3.11: βmnq a

•(0)
m an = aq.

This can be true for all x iff a
•(0)
0 = 1 and 1a

•(0)
n = 0.

Remark 3.13. Identities 3.10 and 3.11 provide a recursive formula for calculating dot-powers. Setting t = p−1
and s = 1 in (3.24) yields the following relation for p ∈ N0 and I ⊆ N0:

a•(p)q [x]q = βnmq ana
•(p−1)
m [x]q (3.28)

3.3.1 Binomial Expansions of Dot-Powers

We may use the pre-pended superscript notation to break apart a sum into two parts, for example:

an[x]n = a0 +1an[x]n (3.29)

We may then raise an[x]n to the positive power s using a binomial expansion:

(an[x]n)s = (a0 +1an[x]n)s

= 0,sΣm

(
s

m

)
(a0)m(1an[x]n)s−m

= 0,sΣm

(
s

m

)
(a0)m 1a•(s−m)

n [x]n

= βsij(a0)i 1a•(j)n [x]n (3.30)

Now let’s generalize this to ka
•(s)
n :

Lemma 3.14. Provided I ⊆ N0 and s ∈ N0, then:

ka•(s)n = βsijβ
q〈r〉i
n δrk(ak)i (k+1)a•(j)q (3.31)

10



Proof. Applying the Binomial Theorem as in (3.30):

(kan[x]n)s = (ak[x]k +(k+1)aq[x]q)s

= 0,sΣi

(
s

i

)
(ak[x]k)i((k+1)aq[x]q)s−i (3.32)

We then simplify with the formulas for raising bracket powers to a power, (2.36), and for multiplying bracket
powers, (2.34):

(kan[x]n)s = 0,sΣi
s!

i!(s− i)!
(ki)!

(k!)i
(ak)i[x](ki)

(k+1)a•(s−i)q [x]q

= 0,sΣi
s!

i!(s− i)!
(ki)!

(k!)i
(ki+ q)!

(ki)!q!
(ak)i (k+1)a•(s−i)q Σq[x](ki+q)

= 0,sΣi
s!

i!(s− i)!
(ki+ q)!

(k!)iq!
(ak)i (k+1)a•(s−i)q Σq[x](ki+q) (3.33)

Next we replace indices with n = ki+ q and j = s− i and introduce β-coefficients:

(kan[x]n)s = Σqβsijβ
n
q〈k〉i(ak)i (k+1)a•(j)q [x]n (3.34)

There are only sums in i, j, q and n above, not in k or s. In order to keep the n as a subscript to match the
left hand side, while still avoiding a sum in k, we may use the Kronecker Delta, δrk from (2.6):

(kan[x]n)s = βsijβ
q〈r〉i
n δrk(ak)i (k+1)a•(j)q [x]n (3.35)

Next we need the following identities that will allow us to simplify the ka
•(s)
n type factors.

Identity 3.15. Provided I ⊆ N0 and s ∈ N0, then:

ka•(s)n = 0 if n < ks (3.36)

Proof. The definition of a dot-power, from (3.20), is: a
•(s)
n = β

〈ρm〉
n aρs . Each a

•(s)
n term is comprised of a

sum of β-products of the aρs coefficients such that s of the ρs indices sum to n. If the smallest allowed value

for the ρs is k, then the smallest value for this sum is ks. Therefore we must have n ≥ ks for a
•(s)
n to be

nonzero.

Identity 3.16. Provided I ⊆ N0 and s ∈ N0, then:

ka•(s)n = δrkβ
〈r〉s
n (ak)s if n = ks (3.37)

Proof. Since there are no subscripts of kan less than k, the only way to sum s subscripts to ks is to have s

factors of ak[x]k multiplied together: (ak[x]k)s = (ks)!
(k!)s (ak)s[x](ks) = ka

•(s)
(ks)[x](ks). The δrk in (3.37) is used to

prevent summation over k.

3.3.2 Rational and Complex Powers

We can also use binomial expansions for rational and complex number powers using Newton’s generalized
binomial coefficient:

Definition 3.17. Given n ∈ N0 and z ∈ C, then Newton’s Binomial Coefficient is given by:

(
z

n

)
=

(z)n
n!

(3.38)

where (z)n is the descending Pochhammer symbol, representing:

(z)n = z(z − 1)(z − 2) . . . (z − n+ 1) (3.39)
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This then allows binomial expansions for any power z ∈ C:

Theorem 3.18. Given I ⊆ N0 and the an,z ∈ C, if a0 6= 0 then:

a•(z)n = Σs

(
z

s

)
(a0)(z−s) 1a•(s)n (3.40)

Proof. We start by writing (an[x]n)z in binomial form:

(an[x]n)z = (a0 +1an[x]n)z (3.41)

Let y(x) =1 an[x]n. If we take the s-th derivative of the left hand side with respect to y, we get:

ds

dys
(a0 +1an[x]n)z = (z)s(a0 +1an[x]n)(z−s) (3.42)

The Taylor series expansion of (an[x]n)z in y with ỹ = 0 is:

(an[x]n)z = Σs
(z)s
s!

(a0)(z−s)(y)s

= Σs

(
z

s

)
(a0)(z−s)(1an[x]n)s

= Σs

(
z

s

)
(a0)(z−s) 1a•(s)n [x]n (3.43)

where
(
z
s

)
is Newton’s Binomial Coefficient from Definition 3.17. Note that we need a0 6= 0 when z 6∈ N0

because the exponent of (a0)(z−s) in (3.40) can go negative if z 6∈ N0.

In Theorem 3.18, (3.40) is a finite sum in s because 1a
•(s)
n = 0 when s > n. We can now take a series,

an[x]n to any rational, real, or complex power when a0 6= 0. And even when a0 = 0, we could shift the center
point (provided a(x) is not identically 0), and then apply Theorem 3.18 to the shifted series where a0 6= 0.

For cases where there are multiple possible values, the (a0)(z−s) factor will determine which branch is
generated by the series. I.e., if (a0)(z−s) is multi-valued there will be a different series for each branch of
(a0)(z−s).

4 The Circular Restricted 3-Body Problem

Now let’s use the tools from Section 3 to attack the Circular Restricted 3-Body Problem. In this section we
will develop a recurrence relation between the derivatives of the position for a test mass in the gravitational
field created by two bodies in a circular orbit.

4.1 Nondimensionalization of the Problem

m2

m1

C

m3

25

2.4 Relationship between Patched Conics and the 3-Body Problem

Equation 2.66, repeated below:
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is actually a much more remarkable result than I previously let on. It is a window

into the connection between the patched-conic assumption and Circular Restricted

3-Body Problem (CR3BP). This section will illuminate the view through this window.

2.4.1 The Circular Restricted 3-Body Problem

Figure 2.8 depicts the geometry of the CR3BP. Here point C is the center of mass

of the system and ~r1 = �r1r̂ and ~r2 = r2r̂ describe the position of the bodies m1 and

m2 relative to the center of mass, where r̂ = cos(!t)⇠̂ + sin(!t)⌘̂. Both bodies are

assumed to be in a circular orbit and at a constant distance from each other. The

spacecraft, m3, is assumed to have negligible mass.
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26

I will nondimensionalize the problem by assuming units such that r1 + r2 = 1 and

µ1+µ2 = 1 (where µ1 and µ2 are the masses m1 and m2 times Newton’s Gravitational

Constant). Since ~r1 and ~r2 are with respect to the center of mass:

m1~r1 + m2~r2 = (�m1r1 + m2r2)r̂2 = 0 = (�µ1r1 + µ2r2)r̂2 (2.85)

Noting that r2 = 1 � r1 and µ1 = 1 � µ2:

�µ1r1 + µ2r2 = (µ2 � 1)r1 + µ2(1 � r1) = 0 (2.86)

When we solve Eqn. 2.86 for r1, we get:

r1 = µ2 = ⌫ (2.87)

Here ⌫ is a parameter that describes both the relative positions and relative masses

of the two gravitating bodies.

Finally, note that because we assume the two-bodies are in a circular orbit, this

nondimensionalization yields:

! =
1

r1 + r2

r
µ1 + µ2

r1 + r2

= 1 (2.88)

2.4.2 CR3BP Lagrangian

Consider m3 in Figure 2.8. First, let’s write its position relative to m1 and m2 as

~⇢1 and ~⇢2 respectively in terms of the third body’s position with respect to the center

of mass, ~r.

~⇢1 = ~r � ~r1 = (⇠ + ⌫ cos(!t))⇠̂ + (⌘ + ⌫ sin(!t))⌘̂ + ⇣⇣̂ (2.89)

Figure 1: The Circular Restricted 3-Body Problem (CR3BP)
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Figure 1 depicts the geometry of the problem. Here point C is the center of mass of the system and
~r1 = −r1r̂ and ~r2 = r2r̂ describe the position of the bodies m1 and m2 relative to the center of mass, where
r̂ = cos(ωt)ξ̂ + sin(ωt)η̂. I will nondimensionalize the problem by assuming units such that r1 + r2 = 1 and
µ1 + µ2 = 1 (where µ1 and µ2 are the masses m1 and m2 times Newton’s Gravitational Constant). Since ~r1
and ~r2 are with respect to the center of mass:

m1 ~r1 +m2 ~r2 = (−m1r1 +m2r2)r̂2 = 0 = (−µ1r1 + µ2r2)r̂2 (4.1)

Noting that r2 = 1− r1 and µ1 = 1− µ2:

−µ1r1 + µ2r2 = (µ2 − 1)r1 + µ2(1− r1) = 0 (4.2)

When we solve (4.2) for r1, we get:
r1 = µ2 = ν (4.3)

Here ν is a parameter that describes both the relative positions and relative masses of the two gravitating
bodies.

Finally, note that if we assume the two-bodies are in a circular orbit, this nondimensionalization yields:

ω =
1

r1 + r2

√
µ1 + µ2

r1 + r2
= 1 (4.4)

4.2 Lagrangian Equations of Motion in Rotating Frame

To derive the Lagrangian Equations of Motion, we start by defining a rotating reference frame (remember
r̂2 is from C to m2):

x̂ = r̂2 ẑ = ξ̂ × η̂ ŷ = ẑ × x̂ (4.5)

The position of m3 relative the center of mass is then:

~r = xx̂+ yŷ + zẑ (4.6)

And ~ρ1 and ~ρ2 are vectors to body 3 from bodies 1 and 2 respectively:

~ρ1 = (x+ ν)x̂+ yŷ + zẑ (4.7)

~ρ2 = (x+ ν − 1)x̂+ yŷ + zẑ (4.8)

with magnitudes:
ρ21 = (x+ ν)2 + (y)2 + (z)2 (4.9)

ρ22 = (x+ ν − 1)2 + (y)2 + (z)2 (4.10)

The specific potential energy, U , of m3 is:

U = −1− ν
ρ1
− ν

ρ2
(4.11)

and the specific kinetic energy, T , of m3 is:

T =
1

2
( ~̇rI · ~̇rI) (4.12)

and ~̇rI is the inertial-frame velocity and is given by:

~̇rI = ~̇r + ~ω × ~r = (ẋ− y)x̂+ (ẏ + x)ŷ + żẑ (4.13)

We may then write T as:

T =
1

2

[
(ẋ− y)2 + (ẏ + x)2 + (ż)2

]
(4.14)

The Lagrangian, L = T − U , is then:

L =
1

2

[
(ẋ− y)2 + (ẏ + x)2 + (ż)2

]
+

1− ν
ρ1

+
ν

ρ2
(4.15)
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We can now get the equations of motion from the Euler-Lagrange equation:

∂L

∂qi
=

d

dt

∂L

∂q̇i
(4.16)

We start with the ∂L
∂qi

:

∂L

∂x
= (ẏ + x)− 1− ν

(ρ1)3
(x+ ν)− ν

(ρ2)3
(x+ ν − 1) (4.17)

∂L

∂y
= −(ẋ− y)− 1− ν

(ρ1)3
y − ν

(ρ2)3
y (4.18)

∂L

∂z
= −1− ν

(ρ1)3
z − ν

(ρ2)3
z (4.19)

The d
dt
∂L
∂q̇i

are then:

d

dt

∂L

∂ẋ
=

d

dt
(ẋ− y) = ẍ− ẏ (4.20)

d

dt

∂L

∂ẏ
=

d

dt
(ẏ + x) = ÿ + ẋ (4.21)

d

dt

∂L

∂ż
=

d

dt
ż = z̈ (4.22)

So the equations of motion in the rotating frame are:

ẍ = 2ẏ + x− 1− ν
(ρ1)3

(x+ ν)− ν

(ρ2)3
(x+ ν − 1) (4.23)

ÿ = −2ẋ+ y − y 1− ν
(ρ1)3

− y ν

(ρ2)3
(4.24)

z̈ = −z 1− ν
(ρ1)3

− z ν

(ρ2)3
(4.25)

4.3 Series Solution to the Lagrangian Equations of Motion

Let’s begin the solution by introducing series derivatives of (ρ1)2 and (ρ2)2:

a1(t) = (ρ1)2 = an1 [t]n a2(t) = (ρ2)2 = an2 [t]n (4.26)

That will then let us substitute in the series derivatives for the x, y, and z that we hope to solve for:

an1 [t]n = (ν)2 + 2νx+ (x)2 + (y)2 + (z)2 (4.27)

= (ν)2 + 2νxn[t]n + xn•(2)[t]n + yn•(2)[t]n + zn•(2)[t]n

=
[
(ν)2 + 2νxn + xn•(2) + yn•(2) + zn•(2)

]
[t]n

an2 [t]n = (ν − 1)2 + 2(ν − 1)x+ (x)2 + (y)2 + (z)2 (4.28)

= (ν − 1)2 + 2(ν − 1)xn[t]n + xn•(2)[t]n + yn•(2)[t]n + zn•(2)[t]n

=
[
(ν − 1)2 + 2(ν − 1)xn + xn•(2) + yn•(2) + zn•(2)

]
[t]n

We may then manipulate these series derivatives so that they can be substituted more easily into the
equations of motion:

1− ν
(ρ1)3

= (1− ν)a
n•(- 32 )
1 [t]n

ν

(ρ2)3
= νa

n•(- 32 )
2 [t]n (4.29)

Now, let’s start with the equation of motion in x, with some rearrangement:

ẍ(t) = 2ẏ(t) + x(t)− (1− ν)(a1(t))−3/2(x+ ν)− ν(a2(t))−3/2(x(t) + ν − 1) (4.30)
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The series derivative form is then:

x(n+2)[t]n = 2yn+1[t]n + xn[t]n −
(

(1− ν)a
p•(- 32 )
1 [t]p + νa

p•(- 32 )
2 [t]p

)
xq[t]q (4.31)

+(ν2 − ν)
(
a
n•(- 32 )
1 [t]n − an•(-

3
2 )

2 [t]n

)

=
[
2yn+1 + xn − βnpq

(
(1− ν)a

p•(- 32 )
1 + νa

p•(- 32 )
2

)
xq + (ν2 − ν)

(
a
n•(- 32 )
1 − an•(-

3
2 )

2

)]
[t]n

Next the equation of motion in y:

ÿ = −2ẋ(t) + y(t)− (1− ν)(a1(t))−3/2y(t)− ν(a2(t))−3/2y(t) (4.32)

y(n+2)[t]n = −2xn+1[t]n + yn[t]n −
(

(1− ν)a
p•(- 32 )
1 [t]p + νa

p•(- 32 )
2 [t]p

)
yq[t]q (4.33)

=
[
−2xn+1 + yn − βnpq

(
(1− ν)a

p•(- 32 )
1 + νa

p•(- 32 )
2

)
yq
]

[t]n

Finally the equation of motion in z:

z̈ = −(1− ν)(a1(t))−3/2z(t)− ν(a2(t))−3/2z(t) (4.34)

z(n+2)[t]n = −
(

(1− ν)a
p•(- 32 )
1 [t]p + νa

p•(- 32 )
2 [t]p

)
zq[t]q (4.35)

= −βnpq
(

(1− ν)a
p•(- 32 )
1 + νa

p•(- 32 )
2

)
zq[t]n

We now have recurrence relations for the derivatives of x,y, and z:

x(n+2) = 2yn+1 + xn − βnpq
(

(1− ν)a
p•(- 32 )
1 + νa

p•(- 32 )
2

)
xq + (ν2 − ν)

(
a
n•(- 32 )
1 − an•(-

3
2 )

2

)
(4.36)

y(n+2) = −2xn+1 + yn − βnpq
(

(1− ν)a
p•(- 32 )
1 + νa

p•(- 32 )
2

)
yq (4.37)

z(n+2) = −βnpq
(

(1− ν)a
p•(- 32 )
1 + νa

p•(- 32 )
2

)
zq (4.38)

ap1 = (ν)2 + 2νxp + xp•(2) + yp•(2) + zp•(2) (4.39)

ap2 = (ν − 1)2 + 2(ν − 1)xp + xp•(2) + yp•(2) + zp•(2) (4.40)

Here the x(n+2), y(n+2), and z(n+2) are only functions of x(1+2), y(1+2), z(1+2), and lower derivatives. In
addition, all of the sums in the recurrence relations above are finite. The derivatives are valid for any center
point and can be used wherever x(t), y(t), and z(t) have derivatives.

4.4 Evaluation of this Solution

To evaluate this solution numerically, we truncate the series at some order and then take steps to control
he error. The coefficients in the recurrence relations are recomputed at each step using the results from
the previous step. As an example for numerical evaluation, I chose an L1 halo orbit from K.C. Howell’s
1984 paper on halo orbits [5]. Specifically, I used the following initial condition (in the rotating frame) with
ν = 0.04:

x0 = [ 0.777413 0 0.284268 0 0.361870 0 ] (4.41)

This was solve with a 5th order expansion and a fixed step size of 0.0002 (in non-dimensional time). Figure
2 shows the result of the integration for a little over one period of the halo orbit (2.5 non-dimensional time).
We can see the shape of the halo, but it did not return to the initial point, and if we were to calculate
another revolution, it would diverge from the halo. The variation of the Jacobi integral from its initial value
over the orbit is also shown.

Better error control than the results in Figure 2 could easily be achieved with any number of numerical
integration methods with a much faster run time. But that’s not the point of this method. What we have is
a symbolic representation of the solution to the circular restricted three body problem from which we may
make mathematical mischief.
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(a) plot of one revolution (b) variation of Jacobi Intergral

Figure 2: Example L1 halo orbit calculation with order 5 series and step of 0.0002

5 Derivatives from this Solution

The recurrence relations for the series derivatives of x,y, and z give us all of the time derivatives, but how do
we get other derivatives? More specifically, how to we get the derivatives of each term in the series derivative
with respect to some other parameter. Such derivatives could then allow us to convert xi(t) functions into
functions of t and some new parameter, λ, using a multivariate Taylor Series:

xi(t, λ) =
dsxni
(dλ)s

[t]n[λ]s (5.1)

There are two approaches for finding these derivatives. The first approach is to take the derivative of the
ODE that we’re solving with respect to some new parameter and then treat the resulting equation as a new
ODE to solve. For example the first derivatives of the CR3BP equations of motion with respect to a λ 6= ν
are:

dẍ

dλ
= 2

dẏ

dλ
+
dx

dλ
+

3

2

1 − ν

(a1)5/2
(x+ ν)

da1
dλ

− 1 − ν

(a1)3/2
dx

dλ
+

3

2

ν

(a2)5/2
(x+ ν − 1)

da2
dλ

− ν

(a2)3/2
dx

dλ
(5.2)

dÿ

dλ
= −2

dẋ

dλ
+
dy

dλ
+

3

2

1 − ν

(a1)5/2
y
da1
dλ

− 1 − ν

(a1)3/2
dy

dλ
+

3

2

ν

(a2)5/2
y
da2
dλ

− ν

(a2)3/2
dy

dλ
(5.3)

dz̈

dλ
=

3

2

1 − ν

(a1)5/2
z
da1
dλ

− 1 − ν

(a1)3/2
dz

dλ
+

3

2

ν

(a2)5/2
z
da2
dλ

− ν

(a2)3/2
dz

dλ
(5.4)

da1
dλ

= 2(x+ ν)
dx

dλ
+ 2y

dy

dλ
+ 2z

dz

dλ
(5.5)

da2
dλ

= 2(x+ ν − 1)
dx

dλ
+ 2y

dy

dλ
+ 2z

dz

dλ
(5.6)

16



which then results in the following recurrence relations:

dx(n+2)

dλ
= 2

dy(n+1)

dλ
+
dxn

dλ
+

3

2
βn
pqr

(
(1 − ν)a

p•(-5/2)
1 (xq + ν)

dar1
dλ

+ νa
p•(-5/2)
2 (xq + ν − 1)

dar2
dλ

)
(5.7)

−βn
pq

(
(1 − ν)a

p•(-3/2)
1

dxq

dλ
+ νa

p•(-3/2)
2

dxq

dλ

)
dy(n+2)

dλ
= −2

dx(n+1)

dλ
+
dyn

dλ
+

3

2
βn
pqr

(
(1 − ν)a

p•(-5/2)
1 yq

dar1
dλ

+ νa
p•(-5/2)
2 yq

dar2
dλ

)
(5.8)

−βn
pq

(
(1 − ν)a

p•(-3/2)
1

dyq

dλ
+ νa

p•(-3/2)
2

dyq

dλ

)
dz(n+2)

dλ
=

3

2
βn
pqr

(
(1 − ν)a

p•(-5/2)
1 zq

dar1
dλ

+ νa
p•(-5/2)
2 zq

dar2
dλ

)
(5.9)

−βn
pq

(
(1 − ν)a

p•(-3/2)
1

dzq

dλ
+ νa

p•(-3/2)
2

dzq

dλ

)
dan1
dλ

= βn
pq

(
2(xp + ν)

dxq

dλ
+ 2yp

dyq

dλ
+ 2zp

dzq

dλ

)
(5.10)

dan2
dλ

= βn
pq

(
2(xp + ν − 1)

dxq

dλ
+ 2yp

dyq

dλ
+ 2zp

dzq

dλ

)
(5.11)

The second approach is to use the chain rule on the series derivative directly:

dxni
dλ

= 1;nΣkΣj
∂xni

∂x
(n-k)
j

dx
(n-k)
j

dλ
(5.12)

where the partials: ∂xni /∂x
(n-k)
j are from the recurrence relation for the xni . This can be generalized to

higher order derivatives:

dsxni
(dλ)s

= 1;nΣk

(
〈ρj !〉
s!

βs〈ρj〉

〈
dρjxnj
(dλ)ρj

〈
∂

∂x
(n-k)
j

〉ρj〉)
x
(n-k)
i (5.13)

where j counts through the different xi (e.g., x, y, and z). This approach can be an easier approach to get

higher derivatives, if we can get the ∂xni /∂x
(n-k)
j partials from the recurrence relation.

In the case of the CR3BP recurrence relations, most of the ∂xni /∂(x
(n−1)
j ) are zero, except for these two:

∂xn

∂(y(n-1))
= 2 (5.14)

∂yn

∂(x(n-1))
= −2 (5.15)

We may then ease the task of finding the ∂xni /∂(x
(n−2)
j ) partials by adding a1 and a2 as xi coordinates along

with x,y, and z. This then gives us:

∂xn

∂(x(n-2))
= 1 − (1 − ν)a

n•(-3/2)
1 − νa

n•(-3/2)
2 (5.16)

∂yn

∂(y(n-2))
= 1 − (1 − ν)a

n•(-3/2)
1 − νa

n•(-3/2)
2 (5.17)

∂zn

∂(z(n-2))
= 1 − (1 − ν)a

n•(-3/2)
1 − νa

n•(-3/2)
2 (5.18)

∂xn

∂(a
(n-2)
1 )

=
3

2
(1 − ν)(x+ ν)a

n•(-5/2)
1 (5.19)

∂xn

∂(a
(n-2)
2 )

=
3

2
ν(x+ ν − 1)a

n•(-5/2)
2 (5.20)
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∂yn

∂(a
(n-2)
1 )

=
3

2
(1 − ν)ya

n•(-5/2)
1 (5.21)

∂yn

∂(a
(n-2)
2 )

=
3

2
νya

n•(-5/2)
2 (5.22)

∂zn

∂(a
(n-2)
1 )

=
3

2
(1 − ν)za

n•(-5/2)
1 (5.23)

∂zn

∂(a
(n-2)
2 )

=
3

2
νza

n•(-5/2)
2 (5.24)

where the the dan1/dλ and dan2/dλ are given by (5.10) and (5.11). All other ∂xni /∂x
(n-k)
j partials zero.

Furthermore, for higher order derivatives, only ∂sxni /(∂x
(n-k)
j )s partials involving a1 and a2 are nonzero. (I

won’t include these derivatives here, but they are straightforward from the above first derivatives.)
Such derivatives, from either method above, allow us to convert x,y, and z from functions of t alone to

functions of t and λ using a multivariate Taylor Series. One application of this would be. to convert the
x(t), y(t), and z(t) into functions of the components of the initial velocity u, v, and w. For that case, the

recurrence relations above would be started from dx1

du = 1, dy
1

dv = 1, dz
1

dw = 1 with the other initial d/dλ’s zero.

6 Conclusion

The notation system and methods presented in this paper provide a new method for the solution of systems
of differential equations such as the equations of motion for the circular restricted three body problem. These
solutions may be slow to evaluate numerically, but they are represented symbolically and can be manipulated
to study the behavior of the solution. For example, the solution can be re-formulated to depend explicitly on
additional parameters such as the initial conditions. While numerical integration techniques can approximate
a particular solution to a set of differential equations, these methods provide a general solution. Although
these solutions can only be evaluated in an approximate sense as a truncated series, their infinite series forms
do represent a general solution for the system. Furthermore, by Theorem 2.6 this solution is valid for the
derivatives of the solution even when the Taylor Series doesn’t converge.

The notation system and series manipulation methods presented in this paper allows this approach to be
readily adapted to solve other difficult systems of ordinary differential equations. In future papers, I will use
this method to present solutions to the n-body problem, the motion of a test particle in an arbitrary force
field, and Euler’s laws of motion for a rigid body.
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